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Abstract
Hierarchical multi-granularity image classification is a
challenging task that aims to tag each given image with
multiple granularity labels simultaneously. Existing methods
tend to overlook that different image regions contribute
differently to label prediction at different granularities,
and also insufficiently consider relationships between
the hierarchical multi-granularity labels. We introduce a
sequence-to-sequence mechanism to overcome these two
problems and propose amulti-granularity sequence generation
approach (MGSG) for the hierarchicalmulti-granularity image
classification task. Specifically, we introduce a transformer
architecture to encode the image into visual representation
sequences. Next, we traverse the taxonomic tree and organize
themulti-granularity labels into sequences, vectorize themand
add positional information. The proposed multi-granularity
sequence generation method builds a decoder that takes visual
representation sequences and semantic label embedding as
inputs, and outputs the predicted multi-granularity label
sequence. The decoder models dependencies and correlations
betweenmulti-granularity labels through amaskedmulti-head
self-attentionmechanism, and relates visual information to the
semantic label information through a cross-modality attention
mechanism. In this way, the proposed method preserves the
relationships between labels at different granularity levels and
takes into account the influence of different image regions on
labels with different granularities. Evaluations on six public
benchmarks qualitatively and quantitatively demonstrate the
advantages of the proposed method. Our project is available
at https://github.com/liuxindazz/mgsg.
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1 Introduction
Recently, there has been increasing interest in applying
and processing multi-granularity images [1–4] in the
computer vision and multimedia communities. Research
on hierarchical multi-granularity images plays a crucial role
in bridging the gap between vision and semantics, since
multi-granularity images naturally contain hierarchical label
semantic information and visual feature representations at
different granularity levels. Among the many related tasks,
hierarchical multi-granularity image classification [5–7] is
a fundamental and challenging task that simultaneously
identifies each given image belonging to labels at different
granularity levels.
Our investigations indicate that there are two

significant difficulties in hierarchical multi-granularity image
classification. Firstly, labels with different granularities have
different effects on learning other granular features. As
Chang et al. claim, coarse-level label prediction exacerbates
fine-grained feature learning, yet fine-level features improve
the learning of coarse-level classifiers. The essence of this
problem lies in the loss of the relationships between the
hierarchical multi-granularity labels. The network cannot rely
on the relationships between the hierarchical multi-granularity
labels for training and prediction. Secondly, hierarchical
multi-granularity image classification involves the hard
subtask of fine-grained image recognition. Fine-grained
image recognition is challenging due to subtle inter-class
differences and significant intra-class variance. Labels of
different granularity correspond to different semantics, and
the image regions they correspond to are likely to be different.
Therefore, in the case of parallel learning of multi-granularity
labels, there may be interactions between features and labels at
different granularity levels. The essence of this problem is that
the modalities of the label and the image are different, so it is
impossible to directly find an appropriate regional expression
in the image through the hierarchical multi-granularity label.
Existing methods usually use a particular mechanism

to solve these problems: a common backbone extracts

https://github.com/liuxindazz/mgsg
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Fig. 1 An example to motivate our approach. The tree shows the hierarchical multi-granularity structure of butterfly taxonomic. Existing
methods divide categories vertically, destroying the relationships between levels, but our method processes them horizontally to obtain
sequences.

features and then different classification heads are used to
predict labels at different granularity levels. As Figure 1
shows, existing methods usually divide different categories
vertically into different granularity levels, in this case, family,
subfamily, genus, and species, and then assign a classification
header to each granularity level. These methods use different
classification heads to separate labels at different granularity
levels, thereby minimizing the impact of labels at different
granularity levels on learning other granularity features.
However, this mechanism often overlooks that different image
regions contribute differently to label prediction at different
granularities and fails to take into account relationships
between the hierarchical multi-granularity labels.
Looking at Figure 1, we see that starting from the root

node of the taxonomic tree and traversing to some leaf
node will naturally generate a sequence. This sequence
not only effectively preserves the relationships between the
various categories but also maintains the granular level
information of the categories by position. Based on this
observation, we introduce a sequence-to-sequencemechanism
to overcome the limitations of existing methods, and propose
a multi-granularity sequence generation approach for the
hierarchical multi-granularity image classification task.
Specifically, we first encode the image into a visual

representation; the encoding methods may include different

types of convolutional neural networks or vision transformer
structures. Without loss of generality, the encoding process
is introduced using a vision transformer as an example. The
given image is first reshaped into a patch sequence without
overlap and then linearly mapped to the sequential tokens. We
build a stack of transformer encoder layers to encode given
sequential image tokens into a visual representation sequence.
Each transformer encoder layer contains a multi-head
self-attention module, a multilayer perceptron, and a residual
structure. We exploit pre-trained transformer-based vision
models’ excellent feature expression ability to obtain a more
discriminative visual feature representation. Next, we traverse
the taxonomic tree and organize the multi-granularity labels
into sequences. These text label sequences are vectorized
by initializing a series of label embeddings. Then we add
location information to these label embeddings to maintain
the granularity of labels. We build a stack of transformer
decoder layers to decode the visual representation sequence
to generate hierarchical multi-granularity label sequences.
Each transformer decoder layer contains a masked multi-head
self-attention module, a cross-modality attention module, a
multilayer perceptron, and a residual structure. The proposed
multi-granularity sequence generation method decoder takes
visual representation sequences and semantic label embedding
as input and outputs the predicted multi-granularity label
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sequence. The decoder preserves the dependencies and
correlations between hierarchical multi-granularity labels
by applying the masked multi-head self-attention mechanism
to labels of different granularity levels. The decoder maps the
visual information to the semantic information of labels by
applying the cross-modal attention mechanism to the visual
representation sequence and semantic label embedding. In
this way, the proposed method preserves the relationships
between labels at different granularity levels and considers the
influence of different image regions on labels with different
granularities.
To verify the effectiveness of our method, we have

conducted extensive experiments on popular benchmarks for
the hierarchical multi-granularity image classification task.
They demonstrate that the proposed method achieves results
competitive with state-of-the-art approaches. Qualitative
experimental results also demonstrate the effectiveness of
the method for modeling label relationships at different
granularities and finding different image regions for different
granularity labels.
In summary, we make two main contributions.
• We introduce a sequence-to-sequence mechanism
and propose a multi-granularity sequence generation
approach for hierarchical multi-granularity image
classification. The proposed method effectively
models the dependencies and correlations between
multi-granularity labels and strengthens the contribution
of different image regions to different granularity labels.

• Extensive quantitative and qualitative experiments
demonstrate the effectiveness of the proposed
method, which achieves performance competitive with
state-of-the-art approaches on six public datasets.
Visual results also confirm that the proposed method
effectively models relationships between labels at
different granularities and selects appropriate image
regions to judge labels at different granularity levels.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 details the proposed
framework. Experimental results and analysis are reported
in Section 4. Finally, we have a discussion in Section 5 and
conclude the paper in Section 6.

2 Related Work
In this section, we review the most recent work on hierarchical
multi-label classification, fine-grained image recognition, and
the vision transformer architecture, especially as it relates to
our own work. We also consider how our framework differs
from previous ones.

2.1 Hierarchical Multi-granularity Image Classifica-
tion

This section first discusses the relationship between
hierarchical multi-granularity image classification and
hierarchical multi-label classification, and then elaborates on
the characteristics of hierarchical multi-granularity image
classification . In hierarchical multi-label classification,
samples are assigned one ormultiple class labels organized in a
structured label hierarchy [8]. Typical hierarchical multi-label
classification problems are text classification [9, 10] and
bioinformatics tasks such as protein function prediction [11]
and gene function [12]. In the computer vision and
multimedia, tasks such as image annotation [13], few-shot
image recognition [14], and semantic segmentation [15] are
also treated as multi-label classification problems.
Hierarchical multi-granularity image classification is a

particular type of hierarchical multi-label classification.
The general hierarchical multi-label classification task
implies that objects contain different aspects of attributes
at different levels, while the hierarchical multi-granularity
image classification task emphasizes different levels of image
perception. For example, in general hierarchical multi-label
classification, document classification, a document containing
the word football could be labeled both with sport and outdoor
activity at the same time. In contrast, in the multi-granularity
image recognition task, an image in the CUB-200-2011
dataset should first be recognized as a bird and then as
a flamingo as bird knowledge increases. However, most
existing works ignore this feature and only use different
classification heads to process labels of different granularities
simultaneously. Some work has explored solutions to this
problem. For example, Chang et al. propose that the ability
to recognize labels at different granularity levels can be
increased by combining different classification heads. Wang
et al. propose to use a hierarchy transition matrix to guide
the classification head for training and prediction. Chen et al.
propose to use an attention mechanism to integrate the output
of the classification head, thereby improving the ability to
model multi-granularity label relationships. Although these
methods are successful, they still do not explicitly model
multi-granularity label relationships. Many studies [16–19]
on hierarchical classification tasks have extensively explored
how to exploit the relationship between multi-granularity
labels. Chen et al. propose a multi-granularity regularization
method to extract hierarchical structure, Wang et al. [17]
propose a deep fuzzy treemodel to learn a better tree structure,
andWang et al. [18] use deep reinforcement multi-granularity
learning to minimize the risk of hierarchical classification
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errors. Like these methods, we also used a tree structure to
express the relationships between multi-granularity labels.
Unlike these methods, our approach further transforms the
tree structure into a collection of multiple sequences, and then
models the relationships. In this paper, we change the way to
approach hierarchical multi-granularity image classification,
mimicking the natural process of cognition, generating the
coarsest-grained labels first and then gradually generating
fine-grained labels. We model and preserve hierarchical
multi-granularity label relationships more efficiently by
constraining multi-granularity label relationships using a
sequence-to-sequence network structure.

2.2 Fine-grained Image Recognition

In the hierarchical multi-granularity image classification task,
fine-grained image recognition [20–27] is more complicated
than coarse-grained image recognition [28–30], due to subtle
inter-class differences and significant intra-class variance.
There are two prevailing paradigms in current research

into fine-grained image recognition: the local approach, and
the global approach. Local approaches focus on locating
discriminative semantic parts of fine-grained objects using
supervised [31, 32] orweakly supervised [20–22]mechanisms
to identify subtle differences between different object
categories. They then build intermediate representations
corresponding to these parts for final classification. Inspired
by such local methods, we input patch-level features into
the transformer decoder of the proposed method to predict
fine-grained labels. Global approaches [23–27] typically learn
discriminative representations with a specific distance metric
so that samples of the same class are close while samples of
different classes are separated.
Global and local approaches have different emphasis, and

both can achieve satisfactory results on fine-grained image
recognition tasks. However, in a hierarchical multi-granularity
image classification, while fine-grained features lead to
better learning of coarse-level classifiers, coarse-level label
prediction makes fine-grained feature learning more difficult,
as Chang et al. point out. Therefore, we propose to model
labels with different granularities to reduce the adverse effects
of coarse-grained labels on fine-grained feature learning.

2.3 Vision Transformers

The transformer is an attention-based [33, 34]
encoder-decoder architecture, which was proposed to
deal with sequences in the field of natural language
processing (NLP) [35, 36]. Inspired by breakthroughs
provided by transformer architectures in NLP, computer

vision researchers have applied an additional attention layer
in either spatial [37, 38] or channel domains [39, 40] to
capture long-range dependencies. Inspired by these ideas,
Dosovitskiy et al. [41] proposed a pure transformer by
using image patches as input for image classification; it
achieves state-of-the-art results on many image classification
benchmarks. Subsequently, many recent works have applied
transformers to computer vision tasks with comparable
results [42]. These include image recognition [41, 43, 44],
object detection [45, 46], segmentation [47], and image
super-resolution [48].
Transformer-based methods [49–54] have also proved

useful in fine-grained image recognition. Specifically, He et al.
introduced a vision transformer as a backbone and proposed
the TransFG approach to select discriminative image regions
with the attentionmap. Chou et al. proposed a plug-in network
that can effectively extract discriminative and uninformative
areas in images, improving recognition accuracy. TransFG
and related subsequent work FFVT [52], AFTrans [50], and
RAMS-Trans [51] belong to the the local method paradigm.
Liu et al. [53] exploit the transformer architecture using a
peak suppression module and knowledge guidance module,
in an approach belonging to the global method paradigm .
Inspired by the above methods, we introduce a

transformer architecture into hierarchical multi-granularity
image recognition and propose a transformer decoder to
generate a multi-granularity label sequence, which provides
a strong basis for hierarchical multi-granularity image
recognition.

3 Method
This section introduces our proposed framework, a
transformer architecture for hierarchical multi-granularity
image classification. Section 3.1 gives an overview of the
model, Section 3.2 details the image encoder and label
sequence construction, and Section 3.3 describes the proposed
multi-granularity sequence generation approach.

3.1 Overview

As Fig. 2 shows, our framework has a clear transformer
encoder and decoder architecture. The transformer encoder
takes images as input and outputs representations of all
tokens to the transformer decoder. The transformer decoder
takes these representations as input, initially generates the
coarsest-grained labels, and then combines the already
generated labels to successively generate finer-grained labels.
Before we give details, we must define some necessary

notation. Given the label space of g-level granularity with L
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Fig. 2 Our framework. Here we visualize multi-granularity sequence generation given a training batch of butterfly images and corresponding
hierarchical multi-granularity label sequences.

labels L = l1, . . . , lL and an image x, the task is to assign a
subset y containing g labels in the label space L to x. From
the perspective of multi-granularity sequence generation,
the hierarchical multi-granularity image classification task
can be formalized as finding an optimal multi-granularity
label sequence y? that maximizes the conditional probability
p(y|x), calculated as follows:

p(y|x) =
g∏

i=1

p(yi|y1, . . . , yi−1, x). (1)

Refer to Figure 2. The given image x is encoded into a
series of feature representations by the transformer encoder.
These representations serve as the global feature F for
multi-granularity sequence generation. The transformer
decoder takes the global feature F and the previous output
state yt−1 of the decoder as the inputs to produce the output
state yt at time-step t. Finally, the loss is calculated by
comparing the last output yt with the ground truth, and the
network parameters are updated by back-propagation.

3.2 Embedding Methods

We next describe in Sections 3.2.1 and 3.2.2 respectively how
to construct the input and output required by the decoder of
the multi-granularity sequence generation method. For the
input image, we use the transformer encoder structure for
encoding For the input label, we need to first convert the label
into a label sequence, and then align it for vectorization.

3.2.1 Transformer Encoder

Let x ∈ RH×W denote a given training image of resolution
(H,W ). The image x is reshaped into a sequence of flattened
2D patches xp ∈ RK×P 2 , where the resolution of each

image patch is (P, P ), and K = HW/P 2 is the resulting
number of patches. These patches are converted to a D

dimensional embedding Epatch ∈ RK×D as input tokens
through a trainable linear projection. The learnable position
embedding Epos ∈ RK×D is added to the patch embedding
to retain positional information, and the result is denoted F0.
The transformer encoder takes this fused vector F0 as the
initial input, and outputs a feature representationwith the same
dimension as the input. In detail, the transformer encoder is
composed of a stack of Ne transformer encoder layers. Each
encoder layer consists of multi-head self-attention (MSA) and
multi-layer perceptron (MLP) blocks. Layer normalization
(LN) is applied before each block and residual connections are
applied after each block. This process is shown in Equation 2.
F0 = Epatch + Epos,

F ′i = MSA(LN(Fi−1)) + Fi−1, i = 1, . . . , Ne,

Fi = MLP(LN(F ′i)) + F ′i , i = 1, . . . , Ne.

(2)

It can be seen that the dimension of the final output F is
(K ×D).

3.2.2 Sequence Construction

For a common hierarchical multi-granularity image
classification task, the multi-granularity labels are built as
a tree structure. In order to convert the tree structure into
sequences,for each image, we start from the root node and
traverse the entire tree to generate a sequence corresponding
to each leaf node. Therefore, each image corresponds to
a sequence of length g from the coarsest-grained label to
the finer-grained labels. To facilitate parallelization of the
transformer decoder, we need to align the input sequence
with the output sequence. Therefore, we add beginning and
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end of sequence markers 〈BOS〉 and 〈EOS〉 to the head and
tail of the label sequence respectively, making the length
of the input and output sequences g + 1. To bale to more
accurately express and facilitate subsequent operations, we
vectorize the elements in each sequence into a label embedding
Elabel ∈ R(g+1)×D; each label embedding has the same
dimension as the transformer encoder output. The learnable
position embedding E

′

pos ∈ R(g+1)×D is added to the label
embedding to retain the sequence context. The result is
denoted S0.

3.3 Multi-granularity Sequence Generation

Section 3.3.1 describes how the decoder of the proposed
method builds the relationships between the different
granularity level labels, while Section 3.3.2 explains how we
associate the visual embedding sequence with the semantic
multi-granularity label embedding.

3.3.1 Relationships between Labels
The transformer decoder treats F is (K ×D), the output of
the transformer encoder, as the global features of the images
and takes the label sequence embeddings S0 as the input,
finally, outputs the predicted values for labels at different
granularity levels of the image.
The transformer decoder is composed of a stack of Nd

transformer decoder layers. Each decoder layer consists of
MSA, cross modality attention (CMA) and MLP blocks. We
use residual connections and layer normalization to avoid
over-fitting during the network training stage. To model the
relationships between labels at different granularity levels, we
first feed the label sequence embeddings into the multi-head
self-attention layer. This process is similar to MSA in the
encoder, but the self-attention layer in the decoder only allows
attention to earlier positions in the output sequence. Therefore,
we mask out the following sequences before the softmax step
in the self-attention computation.

S ′i = MaskedMSA(LN(Si−1)) + Si−1, i = 1, . . . , Nd,

Si = MLP(LN(S ′i)) + S ′i, i = 1, . . . , Nd.
(3)

3.3.2 Visual-Semantic Modality Fusion
The input to the decoder contains two parts: the visual
embedding obtained from encoding the image patches and
the semantic embedding obtained from vectorization of the
multi-granularity labels. We now introduce how we relate the
visual embedding sequences to the semantic embedding of
multi-granularity labels. The fusion of different modality
embeddings is a problem that has been widely studied.

Liu et al. [55] suggest that each modality feature should
be decomposed into a weighted sum of multiple low-rank
features. Then, element-wise multiplication is performed to
obtain fused multi-modality features. This approach inspired
our design of the CMA module. However, rather than
directly using element-wise multiplication, the CMA module
uses attention between different modality features to fuse
them to obtain multi-modality features. In order to solve
the problem of different image regions corresponding to
labels at different granularity levels, we apply the attention
mechanism to all input image token embeddings and label
sequence embeddings. However, there is a a semantic gap
between multi-granularity label embedding space and visual
feature space because of the modality difference. To solve
this problem, we map the multi-granularity label embedding
and image token embedding into a shared space through a
set of learnable shared parameters, and then calculate their
similarity and fuse them.

S ′′i = CMA(Si,F) + Si, i = 1, . . . , Nd,

Si = MLP(LN(S ′′i )) + S ′′i , i = 1, . . . , Nd.
(4)

After performing multiple attention-based operations, we
output an embedding of the same size as the input, followed
by an MLP layer that outputs a likelihood score for each
category:

y = softmax(MLP(out)), (5)

where out denotes the class token vector of the output of the
last transformer decoder layer. We guide network training by
minimizing the cross-entropy loss between y and ground-truth
labels.
In the training phase, the masked MSA allows the model

to be trained in parallel to build the relationships between
hierarchical multi-granularity labels. During inferencing, we
can now automatically regress to generate the output from the
initial 〈BOS〉 vector: in the process of continuous iteration, the
predicted label is used to replace the real label for prediction,
and finally a complete multi-granularity label sequence is
generated.
The proposed multi-granularity sequence generation

method builds a decoder that inputs a sequence of visual
representations and semantic label embeddings, and outputs
a predicted sequence of multi-granularity labels. The
decoder maintains the dependencies and correlations between
multi-granularity labels through the masked multi-head
self-attention mechanism, solving the common label-category
relationship loss problem in hierarchical multi-granularity
image classification. The decoder also associates visual
information with semantic information of hierarchical
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Table 1 Multi-granularity datasets used to evaluate our proposed method.

Dataset Level 1
labels

Level 2
labels

Level 3
labels

Level 4
labels

Training
images

Testing
images

Butterfly-200 5 23 116 200 5,135 15,009
CUB-200-2011 13 38 200 - 5,994 5,794
FGVC-Aircraft 30 70 100 - 6,667 3,333
Stanford Cars 9 196 - - 8,144 8,041
ISIA Food-200 11 52 200 - 118,210 59,287
ISIA Food-500 11 60 500 - 239,379 120,143

Table 2 Hierarchical structure of the six experimental datasets.
Label Level Butterfly-200 CUB-200-2011 FGVC-Aircraft Stanford Cars ISIA Food-200 ISIA Food-500

1 family order maker maker basic basic
2 subfamily family family model ingredient ingredient
3 genus species model - dish dish
4 species - - - -

multi-granularity labels through a cross-modal attention
mechanism, solving the problem that cross-modal information
cannot be effectively matched.

4 Experiments
4.1 Experimental Setup

4.1.1 Datasets

We conducted qualitative and quantitative experiments on
six publicly available multi-granularity datasets: including
Butterfly-200 [5], CUB-200-2011 [56], FGVC-Aircraft [57],
Stanford Cars [58], ISIA Food-200 [59] and ISIA
Food-500 [60] datasets. Statistical details of these datasets
including the number of labels at each level and numbers of
training and test images are summarized in Table 1. The label
hierarchies for these datasets are shown in Table 2.

4.1.2 Implementation Details

We implemented the proposed method with Pytorch,
using four Nvidia V100 GPUs. The input images were
resized to 384 × 384. Following the setting used for Swin
Transformer [44], we used data augmentation, including
random cropping and horizontal flipping, during the training
procedure. Only center cropping was performed during
inferencing. The model was trained for 50 epochs with
stochastic gradient descent. The batch size was set to 16
and momentum to 0.9 for all datasets. The learning rate was
set to 5 × 10−4 initially, with a cosine decay schedule. We
adopted Swin-Transformer pre-trained on ImageNet21k to
initialize the image encoder parameters in all our experiments.
We calculated the top-1 accuracy of different granularity levels
as the evaluation metric.

4.2 Ablation and Related Analyses

We conducted a series of studies using the CUB-200-2011
dataset in order to understand better the working of the
proposed multi-granularity sequence generation approach.
Quantitative experiments were used to assess the influence of
choice of backbone network on classification performance,
and the influence of indiscriminately treating categories at
different granularity levels on classification performance.
Qualitative experiments were used to analyze how the
proposed method affected the modeling of label relations.
4.2.1 Quantitative Experiments
In order to investigate the contribution of the CMA
component in the proposed method, we omitted it, and used
different backbones: ResNet-50 [61], Vision Transformer
(Dosovitskiy et al.) and Swin Transformer [44]. We report
the corresponding recognition accuracies in Table 3. We
see that omitting the CMA module decreases average
recognition accuracy of multi-granularity labels in each case,
demonstrating the utility of CMA components for hierarchical
multi-granularity image classification.
We also conducted experiments on feature learning

using different prediction orders to explore the effect of
multi-granularity labeling on feature learning at different
granularities. Table 4 shows the experimental results: both
forward order and reverse order sequential prediction are better
than parallel prediction. This implies that coarse-grained
label learning inhibits fine-grained feature learning in parallel
learning of multi-granularity labels, as claimed by Chang et
al.. One possible reason is the failure to model the relationship
between multi-granularity labels in parallel prediction. Unlike
parallel prediction methods, a sequential learning paradigm
can better exploit correlation betweenmulti-granularity labels,
either using forward or reverse order prediction. Coarse-to-fine
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Table 3 Results of ablating the CMA component, using the CUB-200-2011 dataset.

Method Backbone CUB-200-2011
l1: order l2: family l3: species average

Without CMA ResNet-50 (He et al.) 97.43 92.56 79.92 89.97
Full MGSG 97.43 92.82 80.13 90.13
Without CMA ViT (Dosovitskiy et al.) 99.35 97.67 90.10 95.71
Full MGSG 99.60 98.00 90.23 95.94
Without CMA Swin-T (Liu et al.) 99.43 98.65 91.22 96.43
Full MGSG 99.66 98.65 91.84 96.72

Table 4 Effect on accuracy (in %, over all levels) of changing
prediction order, using the CUB-200-2011 dataset.

Prediction
Order

CUB-200-2011
l1:order l2:family l3:species average

Parallel 99.31 98.65 90.66 96.04
Reverse 99.13 98.49 91.78 96.47
Forward 99.66 98.65 91.84 96.72

All Correct

All Wrong

Two Wrong

One Wrong

Baseline Ours

Fig. 3 Overall overview of the proportion of labels that were
correctly and incorrectly predicted. Best viewed in color.

forward prediction is slightly better than reverse prediction,
suggesting that in an asynchronous learning paradigm,
coarse-grained labels may instead facilitate the learning of
fine-grained features.
4.2.2 Visual Assessment
In addition to a quantitative analysis, we visualized
proportional relationships between correct and incorrect
predicted labels, to assess the effectiveness of the proposed
method for hierarchical multi-granularity label modeling.
The CUB-200-2011 dataset has three hierarchical levels.

Therefore, we divided label prediction results into four
categories, as shown in Figure 3: all correct, one label wrong,
two labels wrong, and all wrong. In order to more clearly
see differences, we took the logarithms of all values. In this
visualization, our method does not differ much from the
baseline method in general.
Ignoring the all-wrong and all-right cases, which are

irrelevant to the experimental goal, we further analyzed the
cases with one or two labelling errors. We first counted the
number of correct labels at each level when only one label is
correctly identified. The result is shown in Figure 4. If only
one label is correct for the baseline method, it will most likely
be the coarsest-grained label, the order level label, as one

Order Level

Family Level

Species Level

Baseline Ours

Fig. 4 Distribution of labels at each granularity level when only
one label is correct.

Baseline Ours

Order Level

Family Level

Species Level

Fig. 5 Distribution of labels at each granularity level when only
one label is wrong.

would expect. An interesting phenomenon is that in some
cases, the only correct labels are the finest-grained labels,
at species level; there are no cases where the only correct
label is at an intermediate-level. This may mean that labels at
different granularity levels guide the network to learn towards
both ends, and is a topic requiring further exploration in
future. However, it is unreasonable to correctly predict only
the species level label but not the higher level labels, which
indicates that the network ignores semantic relationships
between labels at different granularity levels during training.
Compared to the baseline method, in cases where only one
label is correctly predicted, the proposed method is much
more successful at predicting it at the coarsest-grained level.
In the two-label error case, the proposed method outperforms
the baseline method.
In the case of only one label in error, the results of the

proposed method are very different from the baseline method.
They are difficult to distinguish, since fine-grained images
have significant intra-class differences and slight inter-class
differences. Therefore, for the baseline method, if only one
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Table 5 Accuracy (%) achieved at each level by various methods, for the CUB-200-2011 dataset.

Method Backbone CUB-200-2011
l1: order l2: family l3: species average

LHT (Wang et al. )

ResNet-50 (He et al.)

98.19 92.92 79.29 90.13
HSE (Chen et al.) 98.80 95.70 88.10 94.20
FGN (Chang et al.) 96.37 90.39 77.95 88.24
MGSG (ours) 97.43 92.82 80.13 90.13
FGN (Chang et al.) PMG (Du et al.) 97.98 93.50 82.26 91.25
MGSG (ours) 98.20 94.17 84.61 92.33
MHP ViT (Dosovitskiy et al.) 99.19 97.42 89.40 95.34
MGSG (ours) 99.31 98.00 90.23 95.94
MHP TransFG (He et al.) 99.24 97.98 89.72 95.64
MGSG (ours) 99.36 98.20 90.51 96.02
MHP

Swin-T (Liu et al.)
99.31 98.65 90.66 96.04

FGN (Chang et al.) 99.63 98.49 91.28 96.46
MGSG (ours) 99.66 98.65 91.84 96.72

label is mispredicted, this label is likely to at the finest-grained
label, the species label. However, some of the only wrong
labels are at the order level or family level, which means that
the network model will incorrectly predict the family label
when the order and species labels are correctly predicted.
In contrast, when only one label is wrongly predicted,

the wrong labels predicted by the proposed method are all
species-level labels, as Figure 5 shows: if the coarsest-grained
label is wrong, the finer-grained label will also be wrongly
predicted, and if the finest-grained label is correctly predicted,
then coarser-grained labels are also correct.
The results of the above two experiments show that

the baseline method loses the connections between labels
during training, whereas the proposed method effectively
models the relationships between labels, maintaining semantic
consistency between labels at different granularity levels
during training.

4.3 Comparison to Other Methods

Wehave also compared ourmethod to state-of-the-artmethods
on the six publicly available datasets, and used a multiple
head prediction (MHP) method as a strong baseline in
order to demonstrate the effectiveness of MGSG. The MHP
method uses the pre-trained transformer model as the encoder,
followed by three fully connected layers as classification
heads to classify labels at different granularity levels. As
can be seen from our earlier description, the modules of
our proposed method are loosely coupled, so the proposed
method can easily be combined with pre-trained models for
the hierarchical multi-granularity image classification task.

4.3.1 CUB-200-2011

Here, we compare the proposed method to state-of-the-art
hierarchical multi-granularity image recognition models, with

experimental results shown in Table 5. We conclude that:
(1) Overall, the proposed method performs better than

the state-of-the-art fine-grained methods, including the
attention-based approaches methods HSE (Chen et al.) and
FGN (Chang et al.). It is worth noting that the proposed
method with Swin Transformer is better by 1.61% (90.23%
vs. 91.84%) on the sub-task of label classification at the
finest-grained level compared to the method using Vision
Transformer. This is understandable, as the sliding window
mechanism of Swin Transformer is beneficial when extracting
local information, which is crucial for fine-grained image
recognition.
(2) The choice of backbone greatly influences the results;

a strong backbone can significantly improve classification
accuracy. We implemented FGN using Swin-T as the
backbone to provide a fair comparison to the proposedmethod.
The results show that the proposed method is still better than
the FGN method. The average classification accuracy is
improved by 0.78% (95.94% vs. 96.72%) when switching
the backbone from the pre-trained Vision Transformer to the
pre-trained Swin Transformer, which demonstrates that the
proposed method can effectively exploit the expressive ability
of the pre-trained model.
(3) For labels at increasingly finer levels, recognition

accuracy of the network gradually decreases. For FGN using
Swin-T as the backbone, accuracy drops by 1.14% from the
order to the family level label and 7.21% from the family to the
species level label. For ourmethod, these values are 1.01% and
6.81%, respectively. This shows that although coarse-grained
labels hurt the learning of fine-grained features, our method
effectively mitigates this effect by modeling labels with
different granularities.
(4) To verify the effectiveness of the proposed method,

we tried different backbones, including ResNet-50, PMG,
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Table 6 Accuracy (%) achieved at each level by various methods, for the Butterfly-200 dataset.

Method Backbone Butterfly-200
l1: family l2: subfamily l3: genus l4: species average

LHT (Wang et al. )

ResNet-50 (He et al.)

98.21 96.37 92.40 81.54 92.13
HSE (Chen et al.) 98.90 97.70 95.40 86.10 94.53
FGN (Chang et al.) 96.16 94.04 88.92 76.82 88.99
MGSG (ours) 97.28 95.81 91.56 82.30 91.74
FGN (Chang et al.) PMG (Du et al.) 98.12 94.98 91.66 82.34 91.78
MGSG (ours) 98.37 95.60 94.13 84.56 93.17
MHP ViT (Dosovitskiy et al.) 99.07 97.83 95.25 87.64 94.95
MGSG (ours) 99.12 98.27 95.71 88.27 95.34
MHP TransFG (He et al.) 99.19 98.42 95.98 88.13 95.43
MGSG (ours) 99.22 98.95 96.21 88.38 95.69
MHP

Swin-T (Liu et al.)
99.24 98.62 95.12 88.44 95.36

FGN (Chang et al.) 99.54 98.62 95.38 88.62 95.54
MGSG (ours) 99.66 99.06 96.78 89.24 96.19

Table 7 Accuracy (%) achieved at each level by various methods, for the FGVC-Aircraft dataset.

Method Backbone FGVC-Aircraft
l1: maker l2: family l3: model average

LHT (Wang et al. )

ResNet-50 (He et al.)

95.73 92.89 88.56 92.39
HSE (Chen et al.) 95.12 92.03 88.23 91.79
FGN (Chang et al.) 93.04 90.73 88.35 90.71
MGSG (ours) 94.09 92.17 88.41 91.56
FGN (Chang et al.) PMG (Du et al.) 94.57 90.75 88.31 91.21
MGSG (ours) 95.31 91.87 88.47 91.88
MHP ViT (Dosovitskiy et al.) 95.08 91.12 87.69 91.30
MGSG (ours) 95.31 91.80 88.01 91.71
MHP TransFG (He et al.) 95.32 91.73 87.91 91.65
MGSG (ours) 95.76 92.20 88.11 92.02
MHP

Swin-T (Liu et al.)
95.57 92.15 88.23 91.98

FGN (Chang et al.) 95.83 92.53 88.46 92.27
MGSG (ours) 96.67 93.21 88.07 92.65

ViT, TransFG, and Swin Transformer. Note that we used the
standard non-overlapping patch split when using transFG as
the backbone while not using contrastive loss, to maintain
consistency and fairness of the experiments. The results on
CUB-200-2011 in Table 5 show that, when using ResNet-50
or PMG as the backbone, our proposed method outperforms
the state-of-the-art FGN method by 1.89% and 1.08% in
terms of average accuracy, respectively. With ViT or TransFG
as backbone, the proposed method outperforms the baseline
method MHP in terms of average accuracy.

4.3.2 Butterfly-200

The Butterfly-200 dataset is based on the hierarchical
taxonomy used in biology, with items in 200 species,
116 genera, 23 subfamilies, and 5 families. We used this
dataset to assess the proposed method when using longer
label sequences. As Table 6 shows, our method still shows
advantages on the butterfly-200 dataset, with accuracy 1.66%
higher than the current state-of-the-art method HSE. As we
consider labels at the genus level to labels at the species level,

recognition accuracy of the HSE method drops by 9.30%,
while for the proposed method, it drops by 7.54%, showing a
clear advantage over the HSE method. For the Butterfly-200
dataset with more category levels, the proposed method
also improves on the average accuracy of the state-of-the-art
method, FGN, by 2.75% and 1.39%, respectively, when using
ResNet-50 and PMG as the backbone.

4.3.3 FGVC-Aircraft

The FGVC-Aircraft dataset has 10,000 images covering 100
model variants. Table 7 reports the performance of several
methods on this dataset. The third-level label of this dataset
is model level (e.g., 767-200, 767-300). Most pre-trained
models based on Transformer perform poorly on this dataset,
as is our method. It does not reach the state-of-the-art in
this particular case, but the method’s overall accuracy is
still good, with average accuracy performance exceeding the
state-of-the-art.
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Table 8 Accuracy (%) achieved at each level by various methods, for the Stanford Cars dataset.

Method Backbone Stanford Cars
l1: maker l2: model average

LHT (Wang et al. )

ResNet-50 (He et al.)

96.74 89.67 93.21
HSE (Chen et al.) 96.89 91.32 94.11
FGN (Chang et al.) 95.58 89.66 92.62
MGSG (ours) 96.19 90.31 93.25
FGN (Chang et al.) PMG (Du et al.) 96.42 91.05 93.74
MGSG (ours) 96.77 91.92 94.35
MHP ViT (Dosovitskiy et al.) 96.50 91.19 93.85
MGSG (ours) 96.61 91.53 94.07
MHP TransFG (He et al.) 96.64 91.60 94.12
MGSG (ours) 96.79 91.70 94.25
MHP

Swin-T (Liu et al.)
96.68 91.30 93.99

FGN (Chang et al.) 97.06 91.62 94.44
MGSG (ours) 97.40 92.77 95.09

Table 9 Accuracy (%) achieved at each level by various methods, for the ISIA Food-200 dataset.

Method Backbone ISIA Food-200
l1: basic l2: ingredient l3: dish average

LHT (Wang et al. )

ResNet-50 (He et al.)

84.32 78.03 69.67 77.34
HSE (Chen et al.) 84.15 77.98 69.43 77.19
FGN (Chang et al.) 82.97 75.62 65.13 74.57
MGSG (ours) 83.50 77.17 67.61 76.09
FGN (Chang et al.) PMG (Du et al.) 83.56 77.39 68.15 76.37
MGSG (ours) 84.43 78.78 69.10 77.44
MHP ViT (Dosovitskiy et al.) 84.92 79.94 71.65 78.84
MGSG (ours) 85.22 81.80 73.11 80.04
MHP TransFG (He et al.) 85.10 81.33 72.89 79.77
MGSG (ours) 85.38 82.00 73.90 80.43
MHP

Swin-T (Liu et al.)
85.37 80.19 73.30 79.62

FGN (Chang et al.) 85.97 80.81 74.22 80.33
MGSG (ours) 86.54 81.29 75.12 80.98

4.3.4 Stanford Cars

In order to further verify the effectiveness of the proposed
method at fewer granularity levels, i.e., short label sequences,
we conduct experiments on the Stanford Cars dataset, which
has only two label levels. Table 8 reports the accuracy of
several methods on the Stanford Cars dataset. Going from the
maker level labels to the model level labels, FGN recognition
accuracy drops by 5.37%, while the proposed method drops
by 4.63%: the proposed method can still protect learning of
fine-grained features when few label levels are used.

4.3.5 ISIA Food-200

In order to further explore the scope of application of
our method, following [62], we explored the hierarchical
multi-granularity image classification task on the ISIA
Food-200 dataset. We re-organised this dataset into a
three-level label hierarchy with 11 major food categories
(e.g., Cereals and cereal products and Meat and meat prod-
ucts, 52 ingredient categories (e.g., Bacon and Beef ) and 200
dish categories (e.g., Bacon and eggs and Beef pie). These

food images lack fixed spatial structure and semantic patterns,
and so it is challenging to capture semantic information
at different granularities from these images. Our approach
attempts to make correspondences between the semantics of
different granularities and different image regions, which is
more effective for non-rigid objects.

Table 9 reports the performance of several methods on the
ISIA Food-200 dataset. In terms of average accuracy, our
method achieved the best 80.98% accuracy, outperforming
the state-of-the-art method FGN with Swin transformer
by 0.65%. This result shows that our method provides
more significant performance improvements in complex
hierarchical multi-granularity image classification problems.

4.3.6 ISIA Food-500

ISIA Food-500 is a more comprehensive food dataset than
ISIA Food-200, with more data, and higher diversity. We
reorganized the ISIA Food-500 dataset as for ISIA Food-200,
giving 11 major food categories, 60 ingredient categories,
and 500 dish categories. We tested in the same way as for
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Table 10 Accuracy (%) achieved at each level by various methods, for the ISIA Food-500 dataset.

Method Backbone ISIA Food-500
l1: basic l2: ingredient l3: dish average

LHT (Wang et al. )

ResNet-50 (He et al.)

81.47 73.19 63.35 72.67
HSE (Chen et al.) 82.11 73.39 63.28 72.93
FGN (Chang et al.) 81.21 72.99 62.83 72.34
MGSG (ours) 82.30 74.01 64.39 73.57
FGN (Chang et al.) PMG (Du et al.) 81.83 73.61 63.76 73.07
MGSG (ours) 82.44 74.91 65.75 74.37
MHP ViT (Dosovitskiy et al.) 83.68 76.49 67.98 76.05
MGSG (ours) 84.13 77.52 69.02 76.89
MHP TransFG (He et al.) 84.02 77.28 68.30 76.53
MGSG (ours) 84.48 77.93 69.27 77.23
MHP

Swin-T (Liu et al.)
85.12 78.14 69.58 77.61

FGN (Chang et al.) 85.26 78.36 70.12 77.91
MGSG (ours) 85.33 78.84 70.94 78.37

ISIA Food-200, with results given in Table 10.
Due to the greater amount of data and complexity of

the ISIA Food-500 dataset compared to the ISIA Food-200
dataset, a significant decrease in accuracy was observed for
all methods. The proposed method exceeds the accuracy of
the original baseline method by 1.36% and the state-of-the-art
method by 0.82% for the dish level, showing that ourmethod is
more effective at exploiting fine-grained semantic information
in local regions of images.
For the Stanford Cars dataset with fewer category levels,

the artificial product-centered FGVC-Aircraft dataset, and
the irregularly shaped food-oriented datasets Food-200 and
Food-500, our proposed MGSG method is effective using
various backbones.

4.4 Qualitative Assessment

To more intuitively present the effectiveness of our method,
we show cross-modality attention maps from our method’s
decoder, for sample images from several different datasets in
Fig. 6. We can draw the following conclusions.

(1) For all datasets, our method shows a clear trend: as the
label level becomes finer, the decoder combines the content
of more images for classification and recognition. This trend
demonstrates the ability of the proposed method to model
multi-granularity label relationships from a visual perspective.
(2) For labels at different granularity levels, the location

of critical areas for image classification may be different,
as is particularly evident in the FGVC-aircraft and Stanford
Cars datasets. Therefore, it is valuable to split images into
sequences for processing and use cross-modality attention
to fuse the semantic information of multi-granularity labels
with the visual information of image sequences.
(3) For the coarsest-grained labels, the decoder can often

determine the label from a small area. For finer-grained labels,

the decoder typically needs more image information to assist
judgment. In this way, the logic of our decoder is consistent
with the cognitive logic of human beings.
(4) In [53], it is claimed that, for fine-grained level image

recognition, the diversity of features is significant. Ourmethod
focuses on more image regions, which is also crucial for
fine-grained classification.

5 Discussion

5.1 Is Patch Splitting Necessary?

The use of patch splitting in the encoder is effective, but
whether it is necessary is a matter of debate. It can be easily
seen that the encoder and decoder in the proposed method are
loosely coupled, so the encoder module can be easily replaced,
as verified by our experiments in Section 4.3. While splitting
images into patches is not necessary, it can improve accuracy.
We use this operation for three reasons: (i) several previous
works have shown that splitting images into patches is an
effective way of improving the accuracy of fine-grained image
recognition, (ii) converting the image input into a sequence can
be more readily extended to other multi-modal inputs, such as
a list of food ingredients, and (iii) converting the image input
to sequence form allows use of existing pre-trained vision
transformer parameters, improving recognition performance.
Nevertheless, the experiments using ResNet-50 and PMG
as backbones show that splitting images into patches is
unnecessary. We could also use other encodings, such
as connecting several different fully connected networks
as encoders after the feature maps. We intend to explore
improvement of the encoder in further work.



Multi-Granularity Sequence Generation for Hierarchical Image Classification 13

CUB-2011-200

Original 
image

Order
categories 

Family
categories 

Species
categories 

FGVC-Aircraft

Maker
categories 

Family
categories 

Model
categories 

Original 
image

Stanford Cars

Maker
categories 

Model
categories 

Original 
image

Butterfly-200

Original 
image

Family
categories 

Subfamily
categories 

Genus
categories 

Species
categories

Basic 
categories

Ingredient
categories 

Dish
categories 

Original 
image

ISIA-Food 200 ISIA-Food 500

Ingredient
categories 

Dish
categories 

Original 
image

Basic 
categories

Fig. 6 Cross modality attention weights of different granularity level labels. The yellow means high weights and the green means relatively
low weights. We adaptively remove the part smaller than the average value for a better display effect.

5.2 Are Coarse-grained Labels Beneficial or Detri-
mental to the Learning of Fine-grained Features?

The impact of coarse-grained labels on fine-grained feature
learning is worth discussing. Chang et al. claim that
coarse-level label prediction is detrimental to fine-grained
feature learning. Other literature [63–65] concludes that
coarse-level information can be beneficial for fine-level
learning. Zhao et al. and Fan et al. propose using a tree
classifier instead of the traditional N -way flat softmax
classifier. Wang et al. propose a coarse-to-fine diagnosis
framework to use the knowledge structure. Compared to
these works, our problem of multi-granularity labeling is
different, and therefore different conclusions are drawn. Our
experiments also found that the average accuracy in parallel
prediction without modeling relationships is significantly
lower than when using sequential forward or reverse order
prediction, modeling relationships. Therefore, we conclude

that using relationships between different granularity labels
is critical in multi-granularity feature learning.

6 Conclusion
In this paper, we have investigated hierarchical
multi-granularity image classification and analyzed its
particular problems. The first is that the relationships
between hierarchical multi-granularity image labels are
challenging to construct, and the second is that labels
and visual content are difficult to match. We introduce
a sequence-to-sequence mechanism to address these two
issues, and propose a multi-granularity sequence generation
method for hierarchical multi-granularity image classification
tasks. The proposed multi-granularity sequence generation
method builds a decoder that inputs a sequence of visual
representations and semantic label embeddings and outputs
a predicted sequence of multi-granularity labels. The
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decoder solves the first problem above by maintaining the
dependencies and correlations between multi-granularity
labels through a masked multi-head self-attention mechanism.
The decoder also addresses the second problem above by
associating visual informationwith semantic information from
hierarchical multi-granularity labels through a cross-modal
attention mechanism. Quantitative experiments show that
the proposed method can provide results superior to those
from state-of-the-art methods. Qualitative experiments show
that the method effectively models label relationships at
different granularities and finds distinct image regions for
labels targeting different levels. Phenomena of interest were
found during the experiment,e.g. the network may ignore
labels at intermediate levels, which deserve further study.
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